Mixed Mode Loading of an Interface Crack Subjected to Creep Conditions

نویسندگان

  • Ali P. Gordon
  • David L. McDowell
  • George W. Woodruff
چکیده

Interface cracks are seldom subjected to pure Mode I or pure Mode II conditions. Station~y interface cracks between two distinct, bonded elastic-creep materials subjected to remotely applied mixed mode loading are simulated. The finite element method (FEM) is used to examine crack tip fields and candidate driving force parameters for crack growth. Plane strain conditions are assumed. In most cases a functionally graded transition layer is included between the two materials. Examples of such systems include weld metal (WM) and base metal (BM) interfaces in welded or repaired boiler components subjected to elevated temperatures. Numerical solutions based on the asymptotic fields of the homogeneous and heterogeneous Arcan-type specimens are presented. Creep ductifity-based damage models are used to predict the initial crack propagation trajectory. The incorporation of functionally graded transition layer regions affects the evolution of timedependent stress components in the vicinity of the crack tip. The magnitude and direction of crack tip propagation can then be optimized with respect to interface properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermediate asymptotic behavior of the stress and damage fields in the vicinity of the mixed-mode crack tip under creep regime

The creep crack problems in damaged materials under mixed mode loading (Mode I and Mode II loading) in the framework of creep-damage coupled formulation are considered. The class of the self-similar solutions to the plane creep crack problems in a damaged medium under mixed-mode loading is given. With the similarity variable and the self-similar representation of the solution for a power-law cr...

متن کامل

Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements

Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...

متن کامل

Analysis of Multiple Yoffe-type Moving Cracks in an Orthotropic Half-Plane under Mixed Mode Loading Condition

The present paper deals with the mixed mode fracture analysis of a weakened orthotropic half-plane with multiple cracks propagation. The orthotropic half-plane contains Volterra type glide and climb edge dislocations. It is assumed that the medium is under in-plane loading conditions. The distributed dislocation technique is used to obtain integral equations for the dynamic problem of multiple ...

متن کامل

Crack Propagation Calculations in Aircraft Engines by Coupled FEM-DBEM Approach

New generation jet engines are subject to severe reduced fuel consumption requirements. This usually leads to thin components in which damage issues such as thermomechanical fatigue, creep and crack propagation can be quite important. The combination of stresses due to centrifugal loads and thermal stresses usually leads to mixed-mode loading. Consequently, a suitable crack propagation tool mus...

متن کامل

Numerical Investigation of the Mixed-Mode Stress Intensity Factors in FGMs Considering the Effect of Graded Poisson’s Ratio

In this paper, the interface crack of two non-homogenous functionally graded materials is studied. Subsequently, with employing the displacement method for fracture of mixed-mode stress intensity factors, the continuous variation of material properties are calculated. In this investigation, the displacements are derived with employing of the functional graded material programming and analysis o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003